## Production Planning For A Single Product

Although linear programming has been widely applied in managerial decision making, it has been used most frequently in production decisions. To illustrate the method, a simple two-input/one-output problem is examined. Later sections consider more realistic and complex problems.

### Production Processes

Assume that a firm produces a single product, Q, using two inputs, L and K, which might represent labor and capital. Instead of assuming continuous substitution between L and K, as in Chapter 7, assume that Q can be produced using only four input combinations. In other words, four different production processes are available for making Q, each of which uses a different fixed combination of inputs L and K. The production processes might represent four different plants, each with its own fixed asset configuration and labor requirements. Alternatively, they could be four different assembly lines, each using a different combination of capital equipment and labor.

The four production processes are illustrated as rays in Figure 9.1. Process A requires the combination of 15 units of L and 1 unit of K for each unit of Q produced. Process B uses 10 units of L and 2 units of K for each unit of output. Processes C and D use 7.5 units of L and 3 units of K, and 5 units of L with 5 units of K, respectively, for each unit of Q produced. Each point along the production ray for process A combines L and K in the ratio 15 to 1; process rays B, C, and D are developed in the same way. Each point along a single production ray combines the two inputs in a fixed ratio, with the ratios differing from one production process to another. If L and K represent labor and capital inputs, the four production processes might be different plants employing different production techniques. Process A is very labor intensive in comparison with the other production systems, whereas B, C, and D are based on increasingly capital-intensive technologies.

Point A1 indicates the combination of L and K required to produce one unit of output using the A process. Doubling both L and K doubles the quantity of Q produced; this is indicated by the distance moved along ray A from A1 to A2. Line segment 0A2 is exactly twice the length of

0 0

Don't Blame Us If You End Up Enjoying Your Retired Life Like None Of Your Other Retired Friends. Already Freaked-Out About Your Retirement? Not Having Any Idea As To How You Should Be Planning For It? Started To Doubt If Your Later Years Would Really Be As Golden As They Promised? Fret Not Right Guidance Is Just Around The Corner.

Get My Free Ebook